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Total Positivity: A Review

by

Jee Soo Kim and Frank Proschan

ABSTRACT h
This paper is an invited entry for the Encyclo edi of Statistical

Sciences, edited by N. L. Johnson and S. Katz and published by John Wiley

and Sons. The main objective is to review the concepts of total positivity,

which plays an important role in various domains of mathematics and

statistics. This article describes the power and scope of total posi-

tivity, and samples the great variety of fields of its applications.

1. introduction.

The theory of total positivity has been extensively applied in several

domains of mathematics, statistics, economics, and mechanics. In statistics,

totally, positive functions are fundamental in permitting characterizations

of best statistical procedures for decision prohlems. The scope and power

of this concept extend to ascertaining optimal policy for inventory and

system supply problems, to clarifying the structure of stochastic processes

with continuous path functions, to evaluating the reliability of coherent

systems, and to understanding notions of statistical dependency.

In recent years Samuel Karlin has; made brilliant contributions in

developing the intrinsic relevance and significance of the concept of total



positivity to probability and to statistical theory. In 1968, Karlin wrote

a classical book devoted to this vast subject. This remarkable book presents

a comprehensive, detailed treatment of the analytic structure of totally

positive functions, and conveys the breadth of the great variety of fields of

it applications. This book, together with Karlin's other fundamental papers,

inspired many new developments and discoveries in many areas of statistical

applications. Frydman and Singer '8' obtained a complete solution to the

embedding problem for the class of continuous-time Markov chains: The class

of transition matrices for the finite state time-inhomogeneous birth and

death processes coincides with the class of non-singular totally positive

stochastic matrices. Keilson and Kester "2I employed total positivity to

characterize a class of stochasticallv monotone Markov chain, which has the

property that the expectation of unimodal functions of the chain is itself

unimodal in the initial state. To help unify the area of stochastic com-

parisons Hollander, Proschan and Sethuraman _9 introduced the concept of

functions decreasing in transposition (DT). In the bivariate case, a func-

tion f(Xl, X,; x1, x,) is said to have the DT property if

(a) f( X , ' ;xi' x2) = f('\ " ' x,, X and b ) x1  x

imply that f( 1, X,;_ X1, x,) f( ' '2; x2 , x1) i.e., transposing from

the natural order (x , x,) to (x, xl) decreases the value of the function.

In their paper, total positivitv is essential in showing that PfR=r, . th

probability of rank order X, is a DT function.

Karlin and Rinott I18!, 1191 extended the theory to multivariate

cases. Multivariate total positivity properties are instrumental in IS'

and [19] for the results which are applied to obtain positive dependence

of random vector components and related probability inequalities.

-2
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For an excellent global view of the theory, as well as for pertinent

references, the reader may consult Karlin ?13 .

2. Definition and Basic Properties.

2.1. Definition of Totally Positive Function.

A function f(x,y) of two real variables ranging over linearly ordered one-

dimensional sets X and Y, respectively, is said to be totally positive of order

k (TPk) if for all x 1  < x, < ... < X ' < 2 < " (x i  in X; y inYi,
k l m i l - i i -

and all 1 - m -< k,

f(xlY I ) f~x , 2 )  .. fx Y )
f~x ,1v f 2 )  ... f(x2,Y m )

1 f(x ,y ) f(x'Y") ... .

" . X m

f(xY 1  f(X, 2 ) ... f(xY) (1Y

Typically, X and Y are either intervals of the real line or a countable et of

discrete values on the real line, such as the set of all integers or the set

of nonnegative integers. When X or Y is a set of integers, the term "'equence"

rather than "function- is used. If f(x,y) is TPk for all positive integers

k=l, 2 ..... then ftx,y) is said to he totally Iositive of order , written

TP or TP.

A related, weaker property is that of ign regularity. function f x.v

is sign regular of order k (SR if for every x , X

S.X2 . ....

< Ym, and 1 -_ m k, the sign f i depend, on m alone

!'1

* -I. . . " . . . . .. 4. l!
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Many well known families of density functions (both continuous and discrete)

are totally positive. It should be noted that TP2 is the order of TP-ness

which has found greatest application. In the context of statistics, the TP,

property is referred to as the monotone likelihood ratio property'. Higher

order TP-ness is hardly used in application except for the occasional use of

TP-.

Some examples of functions that possess the TP property are:

(i) f(x,y) = exy is TP in x,yE(--,-), so that f(x,y) = xy is TP in xE!O,=)

and .e(-x, ).

(ii) f(k,t) = e- tF(t) k/k!] is TP in tE(O,-) and k {O, 1, 2, ....

(iii) f1 if a 5x y b
(iii) f(x,y) =a v x b.

2.2. PFk as Special Case of Interest.

The concepts of TP and TP, densities are familiar ones. Every density is

TP while the TP2 densities are those having a monotone likelihood ratio.

A further important specialization occurs if a TPk function may be written

as a function f(x,y) = f(x-y) of the difference of x and y, where x and v

traverse the entire real line; f(u) is then said to be a P61ya frequency function

of order k(PFk). Note that a P61ya frequency function is not necessarily a

probability frequency function in that f f(u~du need not be 1 nor even finite.

The class of PF functions is particularly important and has rich appli-
2

cations to decision theory [10], '11], r12], 118], reliability theory -3', and

the stochastic theory of inventory control models LI], [161.

0(x)Every PF, function is of the form e ' ()where (x) is convex. On the

other hand, there exists no such simple representation for PFk , k 3. Prob-

ability densities which are PF, abound. For other properties and examples



of PF densities, see the entry "P61ya Type 2 Frequency Distributions."

Probability densities which decrease to zero at an algebraic rate in

the tails are not PF,. For example, (i) Weibull with shape parameter

< 1: f(x) = al(Ax)'- exp[-(\x)0 ], x 0 0, X > 0, 0 < o < 1, and (ii)

Cauchy: f(x) = i/C7(l+x)], - < x < are not PF,.

Intriguing results in the structure theory of PFk functions can be found

in Karlin and Proschan [16], Karlin, Proschan, and Barlow 117', and Barlow

and Marshall [2].

2.3. Variation Diminishing Property.

An important feature of totally positive functions of finite or infinite

order is their variation diminishing property: If flx,y) is TPk and gly;

changes sign at most j k-i times, then h(x) f t(x,y) gvy dy changes sign at

most j times; moreover, if h(x) actually changes sign j times, then it must

change sign in the same order as g(y). It is this distinctive property which

makes TP so useful. The variation diminishing property is essentially equiva-

lent to the determinantal inequalities (1). Greater generality in stating

this property is possible. The interested reader is referred to Chapter 1,

Karlin 713]. A more direct approach to the theory is taken by Bro%%n et al. ,

giving appropriate definitions and criteria for checking directly whether a

family of densities possesses variation diminishing property.

2.4. Composition and Preservation Properties.

Many of the structural properties of TPk functions are deducible from

the following basic identity which is an indispensible tool in the study of

total positivity.

Basic Composition Formula. Let h(x,t) = 5 f(x,y) g/y,t) do(y) converge abso-

iaxe*
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lutely, where d(y) is a sigma-finite measure. Then

S . .... t f . . . . .. xf

=Y l . ... ny

ng t nj d,(Yl) ... d ) (2i

tnj

A direct consequence of the composition formula is: If f(x,y) is TPm

and g(y,t) is TP, then h(x,t) = f f(x,y) g(y,t) do(y) (the convolution of f

and g) is TP In many statistical applications this consequence is

min(m,n)*

exploited principally in the case when f and g are P61ya frequency densities.

That is, if f(x) is PFm and g(x) is PFn, then h(x) = f f(x-t) g(t)dt is

PF From this we can obtain a key result as follows.
min(m,n)'

Theorem 1. Let fI' f,, .. be density functions of nonnegative random vari-

ables with each fi a PFk . Then g(n,x) = fl * f, * * fn(x) (* indicates

convolution) is PTk in the variables n and x, where n ranges over 1, 2 .... and

x traverses the positive real line.

The case when the random variables are not restricted to be nonnegative

is discussed in Karlin and Proschan [161. These composition and preservation

properties allow us to generate other totally positive functions, thus making

it easy to enlarge the TP or PF classes and to determine whether the TP pro-

perty holds.

2.5. Unimodality and Smoothness Properties.

A function totally positive or more generally sign regular is endowed with

certain structural properties pertaining to unimodality and smoothening

properties. From the definition of PF2 can be derived
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f(x 1 -y) -f (x0-y)
a0 (3)

f(x 2 -y) - f(x 2 -Y)

for x, < x, and y arbitrary.

In the event that f (ud) = 0 the above inequality implies that f (u) 0 for

u s u, and f (u) 0 for u > u0 . Thi: clearly implies that if f(u) is PF,

then f(u) is unimodal. In particular, every PF2 density is a unimodal density.

We note that the unimodality result is valid in case f is a PF, sequence.

We now describe a smoothening property possessed by the transformation

under which convexity in g(x) is carried over into convexity in h(x), viz.

h(n) f f (n)(xjg(x)dx for n = 1, 2, ... ,4)

where f(n) (x) is the n-fold convolution of f. To make this notion precise

assume f(x) is PF3 and g(x) is convex. Let u = f xf(x)dx. Note that for arbi-

trary real constants a and al,

{g(x)-W(,'o/U)X+alj} f(n) (x)dx = hn - (a0 n+al). (5)

Since g(x) is convex, then g(x -[(aO/u)x+aI7 has at must - changes of sign

and if 2 changes of sign actually occur, they occur in the order + - + as x

traverses the real axis from -- to + -. Since f is PF., f (x is TP- in

the variables n and x by Theorem 1. The variation diminishing property implies

that h(n) - (a n+al) will have at most 2 changes of sign. Moreover, if 4
h(n) - (aon+al) has exactly 2 changes of sign, then these will occur in the

same order as those of g(x) - [(ao/u)x+all, namely + - +. Since a,, a, are

arbitrary, we easily infer that h(n) is a convex function of n. Similar

results apply for concavity.

Lj~jl"
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3. Applications to Statistical Decision Theory.

Historically this is perhaps the first area of statistics benefiting

from the application of TP due to the great papers of Karlin K10], 711', '12-.

We consider the problem of testing a null hypothesis against its alternative

hypothesis, i.e., a 2-action statistical decision problem. There exist two

loss functions L1 and L, on the parameter space where Li() is the loss

incurred if action i is taken when 6 is the true parameter value. The set in

which L (H) < (-, L,('5) is the set in which action 1 (action 2) is preferred

when 0 is the true state of nature. The two actions are indifferent at all

other points. We shall assume that L (8) - L2 (9) changes sign exactly n times

1 2at 91 '1:

Let t be a randomized decision procedure which is the probability of

taking action 2 (accepting the alternative hypothesis) if x is the observed

value of the random varibale X. Let C be the class of all monotone randomized

decision procedures defined by

1 for x2. < x < x2 i~l, i ,1,..., []

( = . for x = x., 0 . <1j 1, 2,..., n (6)

0 elsewhere, !

where F2a] denotes the greatest integer a and x 0 O

Using the variation diminishing property', Karlin F-11] obtained the main i

results, which state:

Theorem 2. Let f(x,O) be a strictly TPn+1 density and (e,) = f [(I - ¢tx

LI (6) + 4(x) L2 (0)] f(x,e) dp(x). Then for any randomized decision procedure €

not in Cn there exists a unique 0 such that f(O, 0 ) f(e, ) with inequalities

everywhere except for e = e1 9 E21 .... 9n*



Theorem 3. If , and y are two procedures in Cn and f is strictly IPn l then

f(x,li dd (x) has less than n zeros counting multiplicities.

Assume f(x,9) is strictly 'FP,. For a one-sided testing problem, existence

of a uniformly most powerful level i test can be easily established by Theorem

2 and Theorem 3.

More detailed discussions and other decision theoretic applications can

be found in Karlin t1O', ill], F12' and Karlin and Rubin 720'.

4. Applications in Probability and Stochastic Processes.

Let P(t,x,E) be the transition probability funct uf a homogeneous

strong Marko process whose state space is an interx n the real line and

which possesses a realization in which almost all sL p1  paths are continuous.

Karlin and McGregor '14' established the intimate relationship between the

general theory of TP functions and the theory of diffusion stochastic processes.

Their main result shows the transition probability function P(t,x.E) is

totally positive in variables x and E. That is, if x1 < x, . ' xn and

E < E, < ... < E (E. < E. denotes that x - v for every x Ei and v E.
In i J 11

then detl P(t,xi,E.) 0 for every t > 0 and integer n. Thi' relation intro-

duces the concept of a TP set function f(x,E) = P(t,x,E) where t is fixed, x

ranges over a subset of the real line, and E is a member of a given sigma

field of sets on the line.

If the state space of the process is countably discrete, then continuitv

of the path functions means that in every transition of the process the particle

changes "position", moving to one of its neighboring states. Thus, discrete

state continuous path processes coincide with the so-called birth-death pro-

cesses (Karlin and McGregor F15]) which is a stationary .Markov proce'4 whose

transition probability matrix Pij(t) = Pr(x(t) = j x(O) = i) is totally

positive in the values i and j for every t " 0.
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Two concrete illustrations of transition probability function thelt

arise from suitable diffusion processes are p14':

niX Let L)l be the usual Laguerre polynomial, normalized sco that I.'
n T

n+i ) , and let Ptt) be the infinite matrix with elements
n

xt iL oo -

Pn (t ) = foe- Ln (x)L!4 (xx eXdx.

mn n m

Then Pit) is strictly TP for each fixed t > 0 and -1. This is ,n .: :-

of a transition probability matrix for a birth-death process.

(ii) The Wiener process on the real line is a strong %arkov nr e .,

continuous path functions. The direct product of n copies of this prc '. <s

the n-dimensional Wiener process which is known to be a stron.o .-rk

Therefore the transition probability function P(tx,F = 1, -,-t ,

-(x-yv/AIt'dy is totally positive for t - 0.

5. \pplications in Inventory Problem.

Suppose that the probability density f(x) of demand for each perod

PF.. The policy followed is to maintain the stock size at a fixed lovel <
3

ivhich will be suitably chosen so as to minimize appropriate expected costs, or

is determined by a fixed capacity restriction. At the end of each period ifn

order is placed to replenish the stock consumed during that period so tha;t 1

constant stock level is maintained on the books. Delivery takes place n

periods later. The expected cost for a stationary period as a function of

the lag is

L(n) = fS h(S-y)f(n)(y)dy + fS O(Y-S)f (n'v)dv -

where S is fixed, h represents the storage cost function and s the penalt\

cost function.

Let h and be convex increasing functions with h(o) = ,to 0. Vhen

° V

- ' -• -r . - ,-.
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te may trite

L(n) = f r (v)f n (y)dy,

hiS-Y) for 0 y < S

%,h e re r (y ) = o
ci'.'-S'J for S < .v.

Not, ri ) is a convex function. Hence by the convexitv preser;in; :,ronerf: Or

I'll, ,e conclude that i. n is a convex func tion. Ihus, if th., 1vn t h of -

increases, the marginal expected loss increases.

.ery interesting applications of total positivity are found in s--tom

supply problems. Suppose we wish to determine the intitial spare-parts kit

for a complex system which provides maximum assurance against system shutdown

due to shortage of essential components during a period of length t tinder a

kudget for spares (
7 .)We assume that a tailed component is instantly re-

nlaced lt a spare, if available. Only spares originall" provided may be used

for replacement, i.e., no resupplv of spares can occur during the period. Thie

sstem contains d i operating components of type i, i = 1, 2.... k. he
th .th

length of life of the t operating component of the t type is assumed to '-C

an independent random variable with PI: densitv fi" i 1. 2 .. d. Th

unit cost of a component of type i is c.

Our problem is to find ni, the number of spares initially provided of the
k k

i t h type, such that 7 Pi(ni) is maximi:ed subject to nc. c. and
i=l 1i1l

n 0, 1, 2, ... for i = , 2, ... , k, where P lm) = probability of experi-

encing _ m failures of type 1.

In Black and Proschan 14], a detailed discussion of methods is given for

computing the solution when each ZnPi(m ) is concave in m. or equivalently,

when each Pi(n-m) is a TP, sequence in n and m. To show Pi(n-m) is a TP,

sequence in n and m, we note:

* ~. I * - -
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1. c. (n), the probability of requiring n replacements of oierat ing coponent

, j, is a PF, sequence in n for each fixed i and i.

2. (n), the probability of requiring n replacements of type i, is a PF.(n ) = c c i2 C (n ) .
sequence in n for each i, since n Cil * c cid .n.

3. P. (n-mn is a TP, sequence in n and m for each i, since

(a) Pi(n) IT (rl-mIq(m) , where

H for m = O, 1, 2 ...

0 0 otherwise,

(b) q(m) is a PF sequence,

and

(c) the convolution of PFk is PF V

A procedure for computing the optimal spare parts kit in terms of P.ami

is given in '41: For arbitrary r > 0, for those i such that ZnP. l- nP. ' -1 l

rci, define n.(rz) = 0; for the remaining i, define n*(r) as 1 + 'largest nk

such that ZnPi(n+l) - ZnPi(n )  >_ rci . Compute cl-n*(r) = 7 cin*(r).
1 iii=l

n* is optimal when c is once of the values assumed by c-n*Ir)- as r

varies over (0, ).

6. Applications in Reliability and Life Testing.

A life distribution F is said to have increasing (decreasing) failure

rate, denoted by IFR (DFR), if log F[-F(t)i - log F(t) is concave (convex on

O, )). If F has a density f, then the failure rate at time t is defined by

j r(t) = f(t)/F(t) for F(t) < 1. Distributions with monotone failure rate are

of considerable practical interest and such distributions constitute a very

( large class.
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The monot oni c it p propert 1 es of the fa i lure rate func t i on r t :a re

intimately connected with the theory of total positivitY. Vihe statement

thait a distribution 1: has ain increasing failiurc, rate is equnivalenit to tile

statement that H -)is TP,. in x and y, or Kx, is P!

The concept of TP yields fruitful appi icat ions in sokmodels. 1

sa~v that a d istr ibut ion 1: has increas ing fi lure rate aiverace I~l I\

,t~ -log Ft t i s i ncreas ing in t 7-0, or equi valIentlIvy Ht~ IIt is de-

creasing in t ,0 . An 1 PRA di st ribut ion provides a naturail de;c r ipt ion

of coherent svstem life when System Componient s are independent I1R. Thle

IlFRA distr-ibution also arises naturally when Shocks occur randomly according

to a Poisson process with inrens it tv. ile ith shock causes ai randoml amount

X.of damage, tvhere X,, ... are independently distributed ith U common

distriblution F.

A device fails then the total accumulated damag-e exceeds a sreciio d

capacity or threshold x. Let I-Uti denote the probability that the dcvi cc

Survives 0,t

Then

17 k=

I for t'0.

Note that e -\t t k!] represents the Poisson proai1iithttedvc

experiences exactly k shocks in 0O,t K while P (X)l represents tile
k

probability that the total damage accumulated over thle k, shocks does iot

exceed the threshold x, with I =P I P.

As key tools in deriving thle main result in shock models. thle methods

ot total posit ivity are employed and in particular- thle VwHIinJriihn

property of 'I'l functions.

'I J...............
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ifPk / k is decreasing in k, Pk-: 0- 1. has at most ,1no si n

change, from + to - if one occurs. Then it follows from the variation

diminishing property that (t It is decreasing in t, i.e., H is 1I-.\.

The following inplications are readily checked:

PF, density -I FR distribution -- IFRA distribution.

For further discussion and illustrations of the usefulness of total

positivity in reliability practices we refer to Barlow and Proschan .3"

. ultivariate Total Positivity and its Relationship to Qualitative

Notions of Dependency.

The following natural generalization of TP, was introduced and studied

by Karlin and Rinott 18].

Definition. Consider a function f(x) defined on X ,- ....X ihere
1 2 k

each K. is totally ordered. We say that f(x) is multivariate totally positie

of order 2 or NITP, if

f(x V vj f (x A y_ fx) f(y) for every x, VE\,

where x v v = (max(x 1 , v1 , max(x 2 , v,I ..... max(xn, Vn)' and

(min(x1 , 1 l, (inx2, y. . ..... minx Vn In order to verify

(1 1) it suffices to show that fix) 0 is TP, in every pair of variables

where the remaining variables are held fixed.

Multivariate normal distributions constitute an important class of NITP,

probability densities. Let X follow the density

f(x) = (2M)-n/2 -1 ' B2expi-!atx-u)'B3x-0"

-1
where g = B = h b n, This density is TP, in each pair of arguments

and hence MTP, if and only if b. ! 0 for all i i.

- - '-l
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In a great many situations, the random variables of interest are not

independent. To appropriately model these situations Esarv, Proschan and

Walkup o' introduced the concept of association of random variables. Random

variables X1 ,  X ...... are said to be associated if Cov(f(X), gX) - C)

for all pairs of increasing functions f and g.

It can be shown IS' that if X = (\I, X .... Xn) has a Joint MTP_

density, the 1: .(X\li\ _ 2 nY . virovidvd : and ,are silr:ii.uusl:.

monotone increasing (or decreasing,. Ilqtlivalently' Cov: A.X' . Ihus

an MTP, random vector X consists of associated random variables.

It is well known that the union of independent sets of associated random

variables produces an enlarged set of associated random variables. Clearly

increasing functions of associated random variables are again associated. It

follows that if X and Y are independent random variables each with associated

components, then the components of 2 = + is associated. Thus, in particular,

if X and Y both have \ITP, densities, then association of (2 1 .
2' n

retained. iow.,ever, - need not have a joint MTP, density.

A key to many of the results on positive dependence and probabilistic

inequalities for the multinormal, multivariate t, and 'ishart distributions

obtained by Karlin and Rinott -19' is the degree of MTP, property inherent in

these distributions. Their main theorem delineates a necessary and sufficient

condition that the density of X1 = ( . where

x = (X , X1, .. '. X. n ) is governed by Nb0, -) be MTP, is that there exists a

diagonal matrix D with diagonal elements l such that the off-diagonal elements

of -DZI D are all nonnegative. For an illustration of the power of this theorem

consider x! = ({X 1, 'x21......X 1xn possessing a joint NITP, density where
p

X N(O, ) Define S. = X , i = 1, 2, ... , n, where

X ( X . 2 X .... p are i.i.d. random vectors

-v +' . . . . S = 1, 2 , .



lb

satisfying the condition of the theorem. The random variables Si, S 2 n

are associated and have the distribution of the diagonal elements of a random

positive definite n>n matrix S where S follows the Wishart distribution

Wn (p, Z) with p degrees of freedom and parameter ". It is established in
n

r19 that Pr (S 1 cn ->  P r (Si a cj) for any positive[19 t at i -  l o - . . S - i=l r - i"

For other applications and ramifications of MTP,, see Karlin and Rinott

£18], £191.

Fahmy et al. 7] exploited the concept of" MTP, to obtain interesting

results on assessing the effect of the sample on the posterior distribution in

the Bayesian context.

i"

1'-'
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